• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于 LightGBM 和LSTM模型的电力大数据异常用电检测方法研究
Research on abnormal power consumption detection method of power big data based on LightGBM model and LSTM model
Received:May 12, 2022  Revised:May 25, 2022
DOI:10.19753/j.issn1001-1390.2025.01.013
中文关键词: 电力大数据  异常用电  Lightgbm 模型  LSTM 模型  双碳经济
英文关键词: power transformer, abnormal power consumption, LightGBM model, LSTM model, dual-carbon economy
基金项目:国网北京市电力公司科技项目:场馆数字中心数据筛选及接入策略可行性研究 ,(项目编号:SGBJHD00FZWT2002164)
Author NameAffiliationE-mail
(Yang Zhidong* State Grid Beijing electric power company a9536548@163.com 
Ding Jianwu State Grid Beijing electric power company a9536548@163.com 
Chen Guangjiu State Grid Beijing electric power company a9536548@163.com 
Kang Xiaojing State Grid Beijing electric power company a9536548@163.com 
Sheng Meng) State Grid Beijing electric power company a9536548@163.com 
Hits: 671
Download times: 143
中文摘要:
      随着双碳经济的提出,智能电网正朝着节能减排的方向发展,而用户的异常用电造成电力资源严重流失。针对传统异常用电检测方法精度低、运行效率慢等问题,提出了一种将LightGBM模型与改进的长短期记忆网模型相结合用于异常用电检测。通过采样和Lightgbm模型相结合进行异常检测,并通过改进长短期记忆网模型给出异常用电类别。通过试验分析了所提方法的优点。结果表明,与传统的检测方法相比,该方法能够快速有效地检测异常用户,检测准确率为98.64%。同时对异常数据进行有效分类,综合分类准确率为96.60%。为异常检测技术的发展提供了一定的参考。
英文摘要:
      With the proposal of the dual-carbon economy, smart grids are developing in the direction of energy conservation and emission reduction, and the abnormal power consumption of users has caused serious loss of power resources. Aiming at the problems of low accuracy and slow operation efficiency of traditional abnormal power consumption detection methods, a lightGBM model combined with an improved long short-term memory network model is proposed for abnormal power consumption detection. Anomaly detection is carried out by combining sampling and lightGBM model, and abnormal electricity consumption category is given by improving long short-term memory network model. The advantages of the proposed method are analyzed through experiments. The results show that, compared with traditional detection methods, the proposed method can detect abnormal users quickly and effectively, with a detection accuracy of 98.64%, meanwhile, the abnormal data is effectively classified, and the comprehensive classification accuracy rate is 96.60%, which provides a certain reference for the development of anomaly detection technology.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd