• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
计及NWP信息缺失的数据共享与GRA权重优化的分布式光伏电站功率预测
Data sharing and GRA weight optimization for power prediction of distributed photovoltaic power plant considering missing NWP information
Received:May 24, 2022  Revised:May 24, 2022
DOI:10.19753/j.issn1001-1390.2025.04.021
中文关键词: 分布式光伏电站,空间相关性,数据共享,权重优化,一维卷积神经网络
英文关键词: distributed photovoltaics, spatial correlation, data sharing, weight optimization, one-dimensional convolutional neural network
基金项目:国网浙江省电力有限公司科技项目(5211DS220009)
Author NameAffiliationE-mail
YANG Xiyun* College of Energy and Power Machinery Engineering, North China Electric Power University yangxiyun916@sohu.com 
YANG Yan College of Energy and Power Machinery Engineering, North China Electric Power University yangyanchntj@163.com 
MENG Lingzhuochao College of Energy and Power Machinery Engineering, North China Electric Power University menglzc@163.com 
PENG Yan Electric Power Research Institute of State Grid Zhejiang Electric Power Limited Company  
WANG Chenxu Electric Power Research Institute of State Grid Zhejiang Electric Power Limited Company  
Hits: 204
Download times: 54
中文摘要:
      由于光伏发电的出力具有很强的间歇性和波动性,大规模光伏电站的接入会冲击电网的稳定性,因此对光伏出力进行精准预测至关重要。此外,由于部分光伏电站无法获得用于功率预测的相关数值天气预报(numerical weather prediction,NWP)信息,这对电网的安全稳定运行又提出了新的挑战。基于此,文中提出一种基于数据共享和灰色关联度分析(grey relation analysis,GRA)权重优化的分布式光伏电站功率预测模型。利用K-means算法对光伏电站进行出力空间相关性聚类,构建多电站数据共享集群,通过相似日数据筛选和BP(back propagation)神经网络神经网络对单个参考电站进行出力预测,利用GRA对参考电站进行权重优化,并通过一维卷积神经网络(1D convolutional neural network,1DCNN)对缺失NWP数据的目标电站出力进行预测。以河北省部分市十个分布式光伏电站进行算例分析,结果表明晴天预测的均方根误差为3.34%,非晴天预测的均方根误差为9.15%,具有较高的准确性和可行性,为电网的稳定运行奠定了基础。
英文摘要:
      Since the output of photovoltaic power generation has a strong intermittency and volatility, the access of large-scale photovoltaic power plants will impact the stability of the power grid, so it is crucial to accurately predict the output of photovoltaics. In addition, because some photovoltaic power plants cannot obtain the relevant numerical weather prediction (NWP) information for power prediction, this poses new challenges to the safe and stable operation of the power grid. On this basis, this paper proposes a power prediction model for distributed photovoltaic power plant based on data sharing and grey relation analysis (GRA) weight optimization. Firstly, the K-means algorithm is used to cluster the output spatial correlation of photovoltaic power plants, and GRA is used to optimize the weight of the reference power station, and the output of the target power station with missing NWP data is predicted by one-dimensional convolutional neural network (1DCNN). According to the example analysis of ten distributed photovoltaic power plants in some cities in Hebei Province, the results show that the RMSE of sunny day prediction is 3.34%, and the RMSE of non-sunny day prediction is 9.15%, which has high accuracy and feasibility, and lays a foundation for the stable operation of the power grid.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd