• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于通径分析和相空间重构的光伏发电预测模型
A hybrid short-term PV power forecast model based on data processing
Received:June 01, 2022  Revised:July 02, 2022
DOI:10.19753/j.issn1001-1390.2022.11.011
中文关键词: 光伏功率预测  通径系数分析  相空间重构  支持向量回归  时间序列
英文关键词: PV  power forecast, path  coefficient analysis, phase  reconstruction, SVR, time  series
基金项目:国家重点研发计划资助项目(2018YFA0702200)
Author NameAffiliationE-mail
Li Botong State Grid Jibei Electric Power Co,Ltd uat@163.com 
Li Mingrui School of Electrical and Information Engineering, Tianjin University 13672120156@163.com 
Liu Mengqing* College of Management and Economics, Tianjin University mengqing.liu@tju.edu.cn 
Hits: 1298
Download times: 397
中文摘要:
      光伏发电的短期预测对电网稳定运行、经济调度和可再生能源调节具有重要意义。但光伏功率输出受辐射强度、温度等气象因素影响,具有较大的波动性和随机性。为了提高预测精度和不同天气类型的普适性,文章提出了一种基于支持向量回归结合相空间重构和相似日选择的混合光伏输出预测算法。采用通径系数分析对历史数据集进行处理,量化光伏出力和气象因子的相关性,并确定主导气象因子作为相似日选择的标准。随后,利用相空间重构技术对非线性光伏功率时间序列进行处理,抑制了原始数据集的混沌特性。用实际数据验证了该算法的预测有效性。结果表明,与传统的支持向量回归模型相比,文中的预测模型可以进一步提高预测精度。此外,文中算法在晴天和阴雨天的情况下都表现出良好的性能。
英文摘要:
      The short-term forecast of photovoltaic solar power is important for grid stable operation, economic dispatch, and renewable energy accommodation. However, photovoltaic power output is influenced by environmental factors such as radiation intensity and temperature, showing great volatility and randomness. In order to further improve the accuracy of prediction and the universality of different weather types, a hybrid photovoltaic power forecast (HPF) algorithm based on support vector regression combined with phase space reconstruction and similar day selection is proposed in this paper. Using the real data, we verify the prediction effectiveness of the proposed HPF algorithm. The results show that compared with the traditional support vector regression model, the prediction model in this paper can further improve the prediction accuracy. Additionally, the algorithm in this paper also shows good performance under both weak-fluctuation and strong fluctuation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd