• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
考虑充电负荷时空分布特性的EV充电站规划
EV charging station planning considering spatial-temporal distribution characteristics of charging load
Received:June 12, 2022  Revised:July 06, 2022
DOI:10.19753/j.issn1001-1390.2025.03.001
中文关键词: EV充电站  时空充电负荷预测  选址定容  自适应模拟退火粒子群算法
英文关键词: electric vehicle charging station, spatial-temporal charging load prediction, location and volume, adaptive simulated annealing particle swarm optimization
基金项目:国家电网公司科技项目资助(JSDL-XLFW-SQ-2016-10-092)
Author NameAffiliationE-mail
ZUO Yifan* School of Automation, Nanjing University of Science and Technology,Nanjing 210094, China 1429674461@qq.com 
LI Weihao School of Automation, Nanjing University of Science and Technology,Nanjing 210094, China 1131388027@qq.com 
YANG Wei School of Automation, Nanjing University of Science and Technology,Nanjing 210094, China weiyang@maili.njust.edu.cn 
Hits: 319
Download times: 109
中文摘要:
      针对电动汽车(electric vehicle, EV)充电站选址定容问题,提出了一种考虑充电负荷时空分布特性的EV充电站规划模型。首先,通过动态Floyd算法结合拉丁超立方抽样法(latin hypercube sampling, LHS)建立了EV的时空充电负荷预测模型。其次,从用户满意度的角度出发,以EV充电站和用户双方的成本最小为目标,采用Voronoi图与自适应模拟退火粒子群优化(adaptive simulated annealing particle swarm optimization, ASAPSO)算法确定充电站的服务范围、最优数量/位置以及各站点快充/慢充充电桩配置数目,建立了EV充电站选址定容模型。最后,通过对北方某市的部分城区进行规划,验证了模型的有效性。
英文摘要:
      Aiming at the problem of location and volume of electric vehicle (EV) charging stations, a planning model of EV charging station considering spatial-temporal distribution characteristics of charging load is proposed. Firstly, the spatial-temporal charging load prediction model of EV is established by dynamic Floyd algorithm combined with Latin hypercube sampling (LHS). Afterwards, from the perspective of considering user satisfaction and aiming at the minimum cost of both EV charging stations and users, Voronoi diagram and an adaptive simulated annealing particle swarm optimization algorithm (ASAPSO) are used to determine the service range, optimal number and location of charging stations, as well as the number of fast charging and slow charging pile configurations of each station. The EV charging station location and volume model is established. Finally, the effectiveness of the model is verified by planning some urban areas of a city in north China.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd