• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度学习的新型电力智能交互平台多任务集成模型研究
Research on multi-task ensemble model based on deep learning for novel power intelligent interaction platform
Received:June 28, 2022  Revised:July 16, 2022
DOI:10.19753/j.issn1001-1390.2023.06.012
中文关键词: 意图理解  深度学习  循环神经网络  自然语言处理  电力服务
英文关键词: intent understanding, deep learning, recurrent neural network, natural language processing, power service
基金项目:河北省电力公司科技项目(TSS2018-03)
Author NameAffiliationE-mail
Cheng Chao* State Grid Hebei Electric Power Company ccheng76@hotmail.com 
Ge Wei State Grid Hebei Electric Power Company ccheng76@hotmail.com 
Guo Lanke State Grid Hebei Shijiazhuang Electric Power Supply Company ccheng76@hotmail.com 
Chen Bo State Grid Hebei Marketing Service Center ccheng76@hotmail.com 
Zhang Yawei State Grid Hebei Electric Power Company ccheng76@hotmail.com 
Hits: 1309
Download times: 332
中文摘要:
      意图理解是新一代电力智能交互平台中的一项基础技术。通过将用户诉求自动分类与分级,可以大幅提升服务效率和质量。针对电力交互平台中的意图理解问题,提出一种基于深度学习的多任务集成模型,该模型可以同时训练意图理解中密切相关的两项子任务:意图检测(Intent Detection)与语义槽填充(Slot Filling)。使用具有长短期记忆(Long-Short Term Memory,LSTM)结构和门控循环单元(Gated Recurrent Unit,GRU)的深度双向循环神经网络(Recurrent Neural Network,RNN)作为基本分类器,多层感知机(Multi-Layer Perceptron,MLP)框架用于组合输出结果,并基于词向量特征与词性特征对模型进行增强。在真实数据上的实验表明该集成多任务模型相比单一模型或其他主流方法更为有效。
英文摘要:
      Intent understanding is a fundamental technology in novel power intelligent interaction platform. Through classifying and grading intents of customers automatically, the efficiency and quality of power service can be remarkably improved. Towards intent understanding problem in power interaction platform, a multi-task ensemble model based on deep learning is proposed, which can simultaneously train two closely related sub-tasks in intent understanding, named intent detection and slot filling. Recurrent neural network (RNN) with long-short term memory (LSTM) and gated recurrent unit (GRU) respectively are used as basic classifier in the proposed model, and multi-layer perceptron (MLP) generates the final output. Word vectors and part-of-speech (POS) features are used to reinforce the proposed model. Experimental results on real-world dialogue data indicates the superiority of the proposed multi-task ensemble model compared with independent models and other peer models.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd