• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于设备运行状态检测与能量回归同步评估的居民非介入式负荷辨识算法研究
Research on residential non intrusive load identification algorithm based on equipment operation state detection and energy regression synchronous evaluation
Received:November 30, 2022  Revised:December 22, 2022
DOI:10.19753/j.issn1001-1390.2023.12.027
中文关键词: 非侵入负荷辨识  多任务学习  多感受野融合  时间卷积
英文关键词: NILM, multi-task learning, multiscale, time convolution network
基金项目:国网公司科技项目(SGBJDK00JLJS2250128):低压台区用户非介入式负荷辨识技术研究及负荷辨识关键装置研发应
Author NameAffiliationE-mail
Song Weiqiong Electric Power Research Institute, State Grid Beijing Electric Power Company swq_1984@163.com 
Wang Liyong Electric Power Research Institute, State Grid Beijing Electric Power Company wangliyongb@bj.sgcc.com.cn 
Song Wei Electric Power Research Institute, State Grid Beijing Electric Power Company 350944759@qq.com 
Zhu Xiaojing* Southeast University 230199117@seu.edu.cn 
Mu Yifan Mentougou Power Supply Company, State Grid Beijing Electric Power Company 1505380361@qq.com 
Fwng Yanjun Southeast University 230179192@seu.edu.cn 
Hits: 621
Download times: 205
中文摘要:
      非侵入负荷辨识技术能够高效低成本的获得用户分项电能并支撑多种业务,基于分项电器能量回归的神经网络为负荷辨识技术提供了重要支撑。文中针对神经网络进行能量分解时在设备关停处的噪声识别污染及基于能量阈值法评估设备运行状态的局限性,提出了基于设备能量分解与运行状态分类的硬参数共享多任务学习模型,并根据能量回归与状态识别对输入序列全局与区域信息的敏感度差异,提出基于多感受野融合的时间卷积网络,实验结果表明文中所提算法模型在辨识效果上取得了提升,并在洗衣机、洗碗机等小功率波动设备上相较传统网络减少了50%的平均能量绝对误差。
英文摘要:
      The non-intrusive load monitoring technology can efficiently and low-cost obtain the sub item power of users and support a variety of services. The neural network based on the energy regression of sub item electrical appliances provides an important support for the load identification technology. In this paper, aiming at the noise identification pollution at the equipment shutdown during the energy regression of the neural network and the limitations of the evaluation of equipment operation status based on the energy threshold method, a hard parameter sharing multi task learning model based on the energy regression and status classification is proposed. According to the sensitivity difference between energy regression and status classification to the global and regional information of the input sequence, a time convolution network based on multiscale receptive field is proposed. The experimental results show that the proposed DNN model has improved the disaggregation performance, and reduced the MAE by 50% compared with the traditional network on small power fluctuation devices such as washing machines and dishwashers.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd