• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CNN-GRU组合神经网络的锂电池寿命预测模型研究
Research on Lithium battery life prediction model based on CNN-GRU combined neural network
Received:December 31, 2022  Revised:February 11, 2023
DOI:j.issn1001-1390.2025.07.009
中文关键词: 锂电池  健康因子  相关系数  卷积神经网络  门控循环单元
英文关键词: Lithium battery, health factor, correlation coefficient, convolutional neural network, gated recurrent unit
基金项目:国家自然科学基金重点项目(52034006),四川省科技计划项目(2020YFQ0038,2020YFSY0037)。
Author NameAffiliationE-mail
ZHANG Anan School of Electrical Engineering and Information, Southwest Petroleum University ananzhang@swpu.edu.cn 
XIE Linxing* School of Electrical Engineering and Information, Southwest Petroleum University 1984284377@qq.com 
YANG Wei School of Electrical Engineering and Information, Southwest Petroleum University yangwei_scu@126.com 
Hits: 68
Download times: 23
中文摘要:
      针对锂电池容量及内阻等直接性能参数获取困难,导致锂电池寿命预测准确度不高的问题,提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)组合神经网络的锂电池寿命预测模型。文章从锂电池充电和放电实验中提取恒流充电时间间隔、恒压充电时间间隔、放电温度峰值时间及循环次数四种间接健康因子,建立Pearson及Spearman相关系数;构建基于CNN-GRU组合神经网络的锂电池寿命预测模型;通过实际数据验证提取健康因子的合理性,并将预测结果与支持向量机模型、长短期记忆(long short-term memory,LSTM)模型、GRU模型、CNN-LSTM模型对比分析,验证所提模型的优越性及有效性。
英文摘要:
      It is difficult to obtain direct performance parameters such as lithium battery capacity and internal resistance, which leads to the problem of low accuracy of lithium battery life prediction. A lithium battery life prediction model based on a combined neural network of convolutional neural network (CNN) and gated recurrent unit (GRU) is proposed. Four indirect health factors including constant current charging time interval, constant voltage charging time interval, discharging temperature peak time and cycle times are extracted from lithium battery charging and discharging experiments, and the Pearson and Spearman correlation coefficients are established. And then, a lithium battery life prediction model is built based on CNN-GRU combined neural network. Finally, the rationality of extracting health factors is verified by actual data, and the prediction results are compared with SVR model, long short-term memory (LSTM) model, GRU model, and CNN-LSTM model to verify the superiority and effectiveness of the proposed model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd