• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
面向新型电力系统大数据的负载标记方法研究
Research on load labeling method for big data in novel power system
Received:February 02, 2023  Revised:February 19, 2023
DOI:j.issn1001-1390.2025.07.005
中文关键词: 电力大数据  数据标记  新型电力系统
英文关键词: power big data, data marking, novel power system
基金项目:南方电网科技项目资助(0002200000091292)
Author NameAffiliationE-mail
ZHANG Ximing* China Southern Power Grid Co., Ltd. zhangximing198003@163.com 
XU Huan China Southern Power Grid Co., Ltd. xuhuan198405@163.com 
YANG Qiuyong China Southern Power Grid Co., Ltd. yangqiuyong1986@163.com 
Hits: 51
Download times: 20
中文摘要:
      电网正在迅速高度信息化和自动化,产生的数据规模也急剧扩大。然而,有效利用电力大数据的一个主要障碍是缺乏高效标记数据方法。通过提出一个灵活的框架,以非侵入性的方法标记负载模式和使用习惯,合成数据标记文件用于需求响应、能源管理和负载监测等智能电网功能。使用匹配滤波器等信号处理技术对数据进行自动预处理。利用生成式对抗网络和内核密度估计器这两个关键的构造来实现数据标记文件的生成。对这些结构中的各种组件进行了优化,以保证学习过程的稳定性。还确定了独特的评估指标,以衡量合成数据集的性能。最后将合成数据集与真实数据集对比,并以此为基础对智能电网机器学习算法进行训练测试,仿真结果验证了所提出方法的有效性。
英文摘要:
      The power grid is rapidly becoming highly informationized and automated, and the scale of data generated is also rapidly expanding. However, one of the main obstacles to the effective use of power big data is the lack of efficient data labeling methods. By proposing a flexible framework to mark load patterns and usage habits in a non-intrusive way, the composite data tag file is used for smart grid functions such as demand response, energy management and load monitoring. The data is automatically preprocessed using signal processing techniques such as matched filter. The generation of data marker files is realized by using two key constructions, namely, the generative adversary network and the kernel density estimator. In addition, various components in these structures are optimized to ensure the stability of the learning process. Unique evaluation indicators are also identified to measure the performance of the composite dataset. The synthetic dataset is compared with the real dataset, and the smart grid machine learning algorithm is trained and tested on this basis. The simulation results verify the effectiveness of the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd