• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种无人机在线喷涂绝缘子RTV质量评价方法
A Quality Evaluation Method for UAV-based Insulator RTV Online Spraying
Received:April 18, 2023  Revised:May 17, 2023
DOI:10.19753/j.issn1001-1390.2023.12.018
中文关键词: 绝缘子  RTV喷涂  图像处理  缺陷分类  质量评估
英文关键词: Insulator  RTV spraying  Image processing  Defect classification  Quality assessment  Fuzzy evaluation
基金项目:国网陕西省电力有限公司科技研发项目(5226AK220001)
Author NameAffiliationE-mail
WANG Bowen State Grid Shaanxi Electric Power Co,Ltd,Ankang Power Supply Company 2053533045@qq.com 
YANG Changjian State Grid Shaanxi Electric Power Research Institute,Xi’an ycjthu@163.com 
WANG Feng State Grid Shaanxi Electric Power Co,Ltd,Ankang Power Supply Company 493844989@qq.com 
Yang Chuankai State Grid Shaanxi Electric Power Research Institute,Xi’an yangchuankai@dky.sn.sgcc.com.cn 
KOU Zongxiang School of Telecommunications Engineering,Xidian University,Xi’an zxkou@foxmail.com 
DU Jianchao* School of Telecommunications Engineering,Xidian University,Xi’an jcdu@xidian.edu.cn 
Hits: 776
Download times: 305
中文摘要:
      针对无人机在线喷涂绝缘子RTV涂层的问题,提出一种基于计算机视觉和深度学习模型的喷涂质量评价方法。首先构建语义分割模型提取图像中绝缘子RTV喷涂区域,然后将提取的区域进行网格划分生成子图像块,接下来将每个图像块送入神经网络分类模型进行缺陷检测和分类,最后结合模糊评价手段,按照各类子图像块所占的面积比例来生成评定分数,实现喷涂质量的评价。经实验验证,本文所提方法能准确有效地检测喷涂缺陷,生成的评价结果符合运检标准,满足实际生产需要。
英文摘要:
      An automatic evaluation method based on depth learning model was proposed to evaluate the insulator RTV spraying quality. This method first collects the insulator image sprayed with RTV and constructs a semantic segmentation model to extract the insulator RTV coating area from the image background. Then the extracted area is divided into rectangle blocks which will be classified into different types, including defected and undefected, through a neural network classification model. Finally, the fuzzy evaluation method is used to evaluate the RTV spraying quality according to the area proportion of the defect blocks in the whole image. Experiments show the proposed method is accurate and effective in that the evaluation results are consistent with the operation and inspection standards, which can meet the actual needs.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd