• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于边缘计算的台区短期负荷预测方法
Short-term substation load forecasting method based on edge computing
Received:November 18, 2023  Revised:December 09, 2023
DOI:10.19753/j.issn1001-1390.2024.04.014
中文关键词: 配电物联网  智能终端  短期负荷预测  仿射传播聚类  数据挖掘
英文关键词: distribution IoT, intelligent terminal, short-term load forecasting, affine propagation, data mining
基金项目:国家电网公司科技资助项目(520600230011)
Author NameAffiliationE-mail
zhangmingze* North China Electric Power University 1172101058@ncepu.edu.cn 
Luan Wenpeng Tianjin University wenpeng.luan@tju.edu.cn 
Ai Xin North China Electric Power University aixin@ncepu.edu.cn 
Liu Bo North China Electric Power University liubo@tju.edu.cn 
Hits: 1060
Download times: 241
中文摘要:
      配变台区是配电物联网与用户交互的重要纽带,台区短期负荷预测对实现配电物联网的精益化管理具有重要意义。为缓解全部台区上传负荷数据所带来的通信压力,本文提出一种基于边缘计算的台区短期负荷预测方法,将台区智能配变终端存储30天的历史负荷数据作为样本数据,通过核平滑法对样本数据进行清洗,因样本数据较少考虑将样本归一化后,拆分为标幺曲线与基值分别计算提高预测结果精度。然后通过相关系数法构建历史负荷数据的相关系数矩阵,用相关系数矩阵替换仿射传播相似度矩阵后聚类求得相似日的标幺曲线,再通过加权求和求得待测日的标幺曲线。同时,按照相似日原理预测待测日基值,最终通过待测日标幺曲线和基值反归一化后得到待测日负荷曲线完成预测工作。通过山东某配变30天的历史负荷数据计算后表明,所提方法可以实现台区负荷量级小、样本少、波动大情形下的合理预测,占用主站计算资源较少,对配网精益化运维具有积极意义。
英文摘要:
      The LV substation short-term load forecasting is of great significance for achieving management of the distribution Internet of Things. In order to alleviate the communication pressure caused by uploading load data from all substations, this paper proposes a short-term substation load forecasting method based on edge computing. By using the 30-day historical load data stored by the intelligent distribution terminal as sample data, the sample data is cleaned using Nadaraya-Watson method. Due to the small amount of sample data, it is considered to normalize the sample and split it into standard unit curves and base value. Then, PCC matrix of historical load data is constructed, and the unit curve of similar days is obtained through AP clustering, and the unit curve of the test day is obtained through weighted summation. At the same time, forecast the base value of the test day and ultimately obtain the load curve of the test day. The result show that the proposed method can achieve reasonable prediction, and it occupies less computing resources in the main station. It has a positive significance for the operation and maintenance of the distribution network.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd