• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多传感器的无人机配电网架空线路自主巡检和姿态控制
Autonomous inspection technology of overhead lines of distribution netword and attitude control of UAVs based on multi-sensor fusiion
Received:January 25, 2024  Revised:April 23, 2024
DOI:10.19753/j.issn1001-1390.2024.08.025
中文关键词: 配电网架空线路巡检  无人机自主巡检  姿态控制  自主避障  拍照对准
英文关键词: overhead distribution lines inspection, UAV autonomous inspection, attitude control, obstacle avoidance, photography alignment
基金项目:国家电网总部科技项目(5108-202218280A-2-369-XG)
Author NameAffiliationE-mail
FAN Yilun Xi’an New3s Technology Co., Ltd., Xi’an 710100, China. yilunfan@gmail.com 
CHEN Lei* State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310063, China yilunfan@gmail.com 
ZHANG Benke Xi’an New3s Technology Co., Ltd., Xi’an 710100, China. zhangbenke@new3s.com.cn 
LIU Yueer Xi’an New3s Technology Co., Ltd., Xi’an 710100, China. lye@new3s.com.cn 
LI Zhengrong Xi’an New3s Technology Co., Ltd., Xi’an 710100, China. lzr@new3s.com.cn 
SUN Yihui State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310063, China 155207226@qq.com 
Hits: 583
Download times: 147
中文摘要:
      针对配电网架空线路无人机巡检过程中人工干预较多且效率低下的问题,文中提出了一种基于多传感器融合的无人机自主巡检与姿态控制方法。所提方法采用MinkUNet深度学习模型对线路通道点云数据进行精确分类,结合杆塔与导线建模方法以及三维航线规划方法,实现了无人机巡检路径的自动规划。在飞行执行阶段,融合毫米波雷达和深度相机数据,结合基于贝叶斯理论的占位栅格地图更新策略,有效识别环境中新出现的障碍物,并通过改进的人工势场法实现自主避障。为了在定位信号受到干扰时确保拍照质量,提出了基于轻量化YOLOv8网络的目标识别模型与云台控制策略,实现对巡检目标的精确自动对准拍照。通过在真实环境和仿真环境中的实验验证,文中提出的方法更适合复杂的配电网巡检场景。
英文摘要:
      In response to the issues of excessive manual intervention and low efficiency in the unmanned aerial vehicle (UAV) inspection of overhead lines of distribution network, this paper proposes a method for autonomous inspection and attitude control of UAVs based on multi-sensor fusion. The method employs a deep learning model based on MinkUNet for segmentation of corridor point cloud data followed by modelling of power poles and transmission lines and three-dimensional flight path planning to achieve the automatic planning of UAV inspection path. During the flight execution phase, filtered millimeter wave radar data and depth camera data are fused under a Bayesian theory-based occupancy grid map update strategy to detect newly emerged obstacles. An improved artificial potential field method is utilized for autonomous obstacle avoidance. To compensate the locating drifts when positioning signals are disrupted, a lightweight YOLOv8-based target recognition model and gimbals control strategy are introduced to enable precision alignment and photography of the inspection targets. The experimental results based on real-world and simulated environments demonstrate that the proposed methods are effective and robust for complex power distribution network inspection scenarios.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd