• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于深度强化学习的新型电力系统无功电压优化控制
Reactive voltage optimization control of new power system based on deep reinforcement learning
Received:March 09, 2024  Revised:March 27, 2024
DOI:10.19753/j.issn1001-1390.2024.09.024
中文关键词: 深度强化学习  马尔可夫决策过程  新型电力系统  无功优化
英文关键词: deep reinforcement learning  renewable energy  new power system  reactive power optimization
基金项目:国家电网公司科技项目(5108-20233058A-1-1-ZN)
Author NameAffiliationE-mail
ZHOU Liangcai* East China Branch of State Grid Corporation 20031690@hhu.edu.cn 
ZHOU Yi East China Branch of State Grid Corporation Zhouy@163.com 
SHEN Weijian NARI Group Corporation (State Grid Electric Power Research Institute) Shenwj@163.com 
HUANG Zhilong East China Branch of State Grid Corporation Huangzhilong@sina.com 
LI Lei NARI Group Corporation (State Grid Electric Power Research Institute) Lil@163.com 
LI Yifeng State Grid Jiangsu Electric Power Co., Ltd. 153976127@qq.com 
Hits: 797
Download times: 178
中文摘要:
      新型电力系统框架下可再生能源的随机性和波动性、负荷的主动性以及电网的电力电子化使得电网的运行方式和实时控制面临着新的挑战。无功电压优化控制是保证电网安全稳定运行的基础,针对可再生能源系统的大规模接入、储能系统的灵活配置带来的无功电压控制问题,本文提出了基于深度强化学习的电网无功电压优化控制方法,综合考虑运行效率、经济性和安全性建立电网无功优化模型,利用马尔可夫决策过程将无功优化问题转化为强化学习序贯决策优化,充分考虑无功调压设备时间、空间耦合特性,利用深度确定性梯度算法(Deep Deterministic Policy Gradient, DDPG)进行模型求解。最后,在改进的IEEE 33算例上进行仿真分析,通过对比验证了本文所提方法在无功优化决策过程中的有效性和可靠性。
英文摘要:
      Under the framework of the new power system, the randomness and volatility of renewable energy, along with load initiative and electronic power grid integration, pose new challenges to the operation mode and real-time control of the power grid. Reactive power and voltage optimization control serve as the foundation for ensuring a safe and stable operation of the power grid. The paper proposes a reactive power and voltage optimization control method based on deep reinforcement learning to address issues caused by large-scale integration of renewable energy systems and flexible configuration of energy storage systems. The proposed method establishes a comprehensive reactive power optimization model considering operational efficiency, economy, and security. By utilizing Markov decision process, we transform the reactive power optimization problem into sequential decision optimization through reinforcement learning while fully considering time-space coupling characteristics of reactive power regulation. Deep Deterministic Policy Gradient (DDPG) is employed to solve this model. Finally, an improved IEEE 33 example is simulated to verify both effectiveness and reliability in optimizing reactive power decision-making process.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd