• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于多目标模态分解与NAHL神经网络的电动汽车充电负荷预测方法
Electric vehicle charging load prediction method based on multi-objective modal decomposition and NAHL neural network
Received:September 29, 2024  Revised:October 16, 2024
DOI:10.19753/j.issn1001-1390.2025.03.003
中文关键词: 电动汽车  负荷预测  变分模态分解  模糊熵  NSGAII  NAHL神经网络
英文关键词: electric vehicles, load forecasting, VMD, fuzzy entropy, NSGAII, NAHL neural network
基金项目:国家自然科学基金(62303191;62306123)
Author NameAffiliationE-mail
GUO Xinzhe Faculty of Automation, Huaiyin Institute of Technology,Huai'an 223003, Jiangsu, China g17730818183@163.com 
WANG Yeqin 1. Faculty of Automation, Huaiyin Institute of Technology,Huai'an 223003, China. 2. Jiangsu Permanent Magnet Motor Engineering Research, Huai'an 223003,Jiangsu, China. wangyeqin@hyit.edu.cn 
WANG Chao Department of Water Resources, China Institute of Water Resources and Hydropower Research,Beijing 100038, China wangchao@iwhr.com 
WU Mingjiang Faculty of Automation, Huaiyin Institute of Technology,Huai'an 223003, Jiangsu, China 18790433958@163.com 
YANG Yan Faculty of Automation, Huaiyin Institute of Technology,Huai'an 223003, Jiangsu, China yangyan@hyit.edu.cn 
ZHANG Chu* Faculty of Automation, Huaiyin Institute of Technology,Huai'an 223003, Jiangsu, China zhangchuhust@foxmail.com 
Hits: 284
Download times: 79
中文摘要:
      为提高电动汽车充电负荷预测精度,提出了一种基于多目标变分模态分解(variational mode decomposition, VMD)和具有增强隐藏层的自动人工神经网络(network with an augmented hidden layer, NAHL)的预测方法。文章采用模拟单点二进制交叉算子(simulated binary crossover, SBX)和线性递减的自适应变异策略(linear decreasing mutation, LDM)对NSGAII(non-dominated sorting genetic algorithm II)算法进行改进,称为NSGAII-LDSBX算法,利用改进NSGAII-LDSBX算法优化VMD的参数,将信号分解为若干个子序列,并通过模糊熵(fuzzy entropy, FE)对子序列进行重构;进一步使用NSGAII-LDSBX对NAHL模型进行优化,对各分量进行预测;以上海市嘉定区电动汽车充电站的负荷为例进行实验。分析表明:与其他模型相比,所提模型具有更好的预测精度,可有效预测电动汽车充电负荷。
英文摘要:
      To improve the accuracy of electric vehicle charging load prediction, a prediction method based on multi-objective variational mode decomposition (VMD) and automatic artificial neural network with an augmented hidden layer (NAHL) is proposed. The non-dominated sorting genetic algorithm II (NSGAII) is improved by using the simulated binary crossover (SBX) and linear decreasing mutation (LDM), known as the NSGAII-LDSBX algorithm. The improved NSGAII-LDSBX algorithm is used to optimize the parameters of VMD, decompose the signal into several subsequences, and reconstruct the subsequences through fuzzy entropy (FE). Furthermore, the NSGAII-LDSBX is used to optimize the NAHL model and predict each component. An experiment is conducted using the load of the electric vehicle charging station in Jiading District, Shanghai as an example. Analysis shows that compared with other models, the proposed model has better prediction accuracy and can effectively predict the charging load of electric vehicles.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd