• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于CEEMDAN-SE和DBN的短期电力负荷预测
Short-term load forecasting based on CEEMDAN-SE and DBN
Received:March 19, 2019  Revised:March 19, 2019
DOI:10.19753/j.issn1001-1390.2020.17.010
中文关键词: 负荷预测  CEEMDAN  样本熵  深度学习  深度信念网络  组合模型
英文关键词: load forecasting, CEEMDAN, sample entropy, deep learning, deep belief network, combined model
基金项目:天津市自然科学基金重点项目(08JCZDJC18600);天津市教委重点基金项目(2006ZD32)
Author NameAffiliationE-mail
Yue Youjun Tianjin University of Technology bakeryue@tjut.edu.cn 
Liu Yinghan* Tianjin University of Technology 745927064@qq.com 
Zhao Hui Tianjin University of Technology zhaohui3379@126.com 
Wang Hongjun Tianjin University of Technology hongewang@126.com 
Hits: 1390
Download times: 675
中文摘要:
      为提高短期负荷预测精度,提出一种基于自适应噪声的完全集合经验模态分解(CEEMDAN)-样本熵(SE)和深度信念网络(DBN)的短期负荷组合预测模型。首先利用CEEMDAN-样本熵将原始负荷序列分解为多个特征互异的子序列,计算各子序列的样本熵,将熵值相近的子序列重组得到新序列,降低了原始非平稳序列对预测精度造成的影响并减小计算规模;随后综合考虑各新序列的周期特性和影响因素对每个新序列分别构建不同的DBN预测模型,利用DBN预测模型克服了浅层神经网络特征提取不充分及初始参数难确定的问题;最后将预测结果叠加得到最终预测值。仿真结果表明,该组合预测模型有效提高了预测精度。
英文摘要:
      To increase the accuracy of short-term load forecasting, a short-term load combination forecasting model based on adaptive noise-based full set empirical mode decomposition (CEEMDAN)-sample entropy (SE) and deep belief network (DBN) is proposed. Firstly, CEEMDAN-sample entropy is used to decompose the original load sequence into multiple sub-sequences with different characteristics. The sample entropy of each sub-sequence is calculated, and the sub-sequences with similar entropy values are recombined to obtain a new sequence, which reduces the accuracy of the original non-stationary sequence. The impact is reduced and the computational scale is reduced. Then, considering the periodic characteristics and influencing factors of each new sequence, different DBN prediction models are constructed for each new sequence,Using DBN prediction model to overcome the problem of insufficient feature extraction and initial parameters of shallow neural network and finally the prediction results are superimposed to obtain the final prediction value. The simulation results show that the combined prediction model effectively improves the prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd